{ "id": "1211.4640", "version": "v1", "published": "2012-11-20T00:59:15.000Z", "updated": "2012-11-20T00:59:15.000Z", "title": "On a problem of Bourgain concerning the $L^1$-norm of exponential sums", "authors": [ "Christoph Aistleitner" ], "categories": [ "math.CA" ], "abstract": "Bourgain posed the problem of calculating $$ \\Sigma = \\sup_{n \\geq 1} ~\\sup_{k_1 <... < k_n} \\frac{1}{\\sqrt{n}}\\| \\sum_{j=1}^n e^{2 \\pi i k_j \\theta}\\|_{L^1([0,1])}. $$ It is clear that $\\Sigma \\leq 1$; beyond that, determining whether $\\Sigma < 1$ or $\\Sigma=1$ would have some interesting implications, for example concerning the problem whether all rank one transformations have singular maximal spectral type. In the present paper we prove $\\Sigma \\geq \\sqrt{\\pi}/2 \\approx 0.886$, by this means improving a result of Karatsuba. For the proof we use a quantitative two-dimensional version of the central limit theorem for lacunary trigonometric series, which in its original form is due to Salem and Zygmund.", "revisions": [ { "version": "v1", "updated": "2012-11-20T00:59:15.000Z" } ], "analyses": { "subjects": [ "42A05", "33B10" ], "keywords": [ "exponential sums", "bourgain concerning", "singular maximal spectral type", "central limit theorem", "lacunary trigonometric series" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1211.4640A" } } }