{ "id": "1211.4535", "version": "v3", "published": "2012-11-19T18:53:51.000Z", "updated": "2014-07-29T09:34:51.000Z", "title": "Singular values and bounded Siegel disks", "authors": [ "Anna Miriam Benini", "Nuria Fagella" ], "comment": "Minor changes in the arguments, improved exposition. Same results", "categories": [ "math.DS" ], "abstract": "Let $f$ be an entire transcendental function of finite order and $\\Delta$ be a forward invariant bounded Siegel disk for $f$ with rotation number in Herman's class $\\mathcal{H}$. We show that if $f$ has two singular values with bounded orbit, then the boundary of $\\Delta$ contains a critical point. We also give a criterion under which the critical point in question is recurrent. We actually prove a more general theorem with less restrictive hypotheses, from which these results follow.", "revisions": [ { "version": "v3", "updated": "2014-07-29T09:34:51.000Z" } ], "analyses": { "subjects": [ "37F10", "37F20", "37F50" ], "keywords": [ "singular values", "entire transcendental function", "forward invariant bounded siegel disk", "critical point", "general theorem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1211.4535B" } } }