{ "id": "1211.4466", "version": "v1", "published": "2012-11-19T15:41:20.000Z", "updated": "2012-11-19T15:41:20.000Z", "title": "Dynkin operators, renormalization and the geometric $β$ function", "authors": [ "Susama Agarwala" ], "categories": [ "math-ph", "hep-th", "math.DS", "math.MP" ], "abstract": "In this paper, I show a close connection between renormalization and a generalization of the Dynkin operator in terms of logarithmic derivations. The geometric $\\beta$ function, which describes the dependence of a Quantum Field Theory on an energy scale defines is defined by a complete vector field on a Lie group $G$ defined by a QFT. It also defines a generalized Dynkin operator.", "revisions": [ { "version": "v1", "updated": "2012-11-19T15:41:20.000Z" } ], "analyses": { "keywords": [ "renormalization", "complete vector field", "energy scale defines", "quantum field theory", "lie group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "inspire": 1203177, "adsabs": "2012arXiv1211.4466A" } } }