{ "id": "1211.4446", "version": "v1", "published": "2012-11-19T14:48:04.000Z", "updated": "2012-11-19T14:48:04.000Z", "title": "On convergence and growth of sums $\\sum c_k f(kx)$", "authors": [ "Istvan Berkes" ], "categories": [ "math.CA" ], "abstract": "For a periodic function $f$ with bounded variation and integral zero on its period interval, we show that $\\sum_{k=1}^\\infty c_k^2 (\\log\\log k)^\\gamma <\\infty$, $\\gamma>4$ implies the almost everywhere convergence of $\\sum_{k=1}^\\infty c_k f(n_kx)$ for any increasing sequence $(n_k)$ of integers. We also construct an example showing that the previous condition is not sufficient for $\\gamma<2$. Finally we give an a.e. bound for the growth of sums $\\sum_{k=1}^N f(n_kx)$ differing from the corresponding optimal result for trigonometric sums by a loglog factor.", "revisions": [ { "version": "v1", "updated": "2012-11-19T14:48:04.000Z" } ], "analyses": { "keywords": [ "convergence", "integral zero", "period interval", "periodic function", "corresponding optimal result" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1211.4446B" } } }