{ "id": "1211.3948", "version": "v1", "published": "2012-11-16T16:38:22.000Z", "updated": "2012-11-16T16:38:22.000Z", "title": "Subsets of Products of Finite Sets of Positive Upper Density", "authors": [ "Stevo Todorcevic", "Konstantinos Tyros" ], "comment": "12 pages", "categories": [ "math.CO" ], "abstract": "In this note we prove that for every sequence $(m_q)_{q}$ of positive integers and for every real $0<\\delta\\leqslant1$ there is a sequence $(n_q)_{q}$ of positive integers such that for every sequence $(H_q)_{q}$ of finite sets such that $|H_q|=n_q$ for every $q\\in\\mathbb{N}$ and for every $D\\subseteq \\bigcup_k\\prod_{q=0}^{k-1}H_q$ with the property that $$\\limsup_k \\frac{|D\\cap \\prod_{q=0}^{k-1} H_q|}{|\\prod_{q=0}^{k-1}H_q|}\\geqslant\\delta$$ there is a sequence $(J_q)_{q}$, where $J_q\\subseteq H_q$ and $|J_q|=m_q$ for all $q$, such that $\\prod_{q=0}^{k-1}J_q\\subseteq D$ for infinitely many $k.$ This gives us a density version of a well-known Ramsey-theoretic result. We also give some estimates on the sequence $(n_q)_{q}$ in terms of the sequence of $(m_q)_{q}$.", "revisions": [ { "version": "v1", "updated": "2012-11-16T16:38:22.000Z" } ], "analyses": { "keywords": [ "positive upper density", "finite sets", "positive integers", "well-known ramsey-theoretic result", "density version" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1211.3948T" } } }