{ "id": "1211.3645", "version": "v2", "published": "2012-11-15T16:31:33.000Z", "updated": "2013-04-29T06:51:11.000Z", "title": "A new mass for asymptotically flat manifolds", "authors": [ "Yuxin Ge", "Guofang Wang", "Jie Wu" ], "comment": "32 pages. arXiv:1211.7305 was integrated into this new version as an application", "categories": [ "math.DG", "gr-qc" ], "abstract": "In this paper we introduce a mass for asymptotically flat manifolds by using the Gauss-Bonnet curvature. We first prove that the mass is well-defined and is a geometric invariant, if the Gauss-Bonnet curvature is integrable and the decay order $\\tau$ satisfies $\\tau > \\frac {n-4}{3}.$ Then we show a positive mass theorem for asymptotically flat graphs over ${\\mathbb R}^n$. Moreover we obtain also Penrose type inequalities in this case.", "revisions": [ { "version": "v2", "updated": "2013-04-29T06:51:11.000Z" } ], "analyses": { "keywords": [ "asymptotically flat manifolds", "gauss-bonnet curvature", "penrose type inequalities", "decay order", "geometric invariant" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable", "inspire": 1203215, "adsabs": "2012arXiv1211.3645G" } } }