{ "id": "1211.3386", "version": "v2", "published": "2012-11-14T19:13:24.000Z", "updated": "2013-11-14T16:59:55.000Z", "title": "Characterization of the restricted type spaces R(X)", "authors": [ "Javier Soria", "Pedro Tradacete" ], "comment": "21 pages", "categories": [ "math.FA", "math.CA" ], "abstract": "We study functorial properties of the spaces $R(X)$, introduced in [Studia Math. 197 (2010), 69-79] as a central tool in the analysis of the Hardy operator minus the identity on decreasing functions. In particular, we provide conditions on a minimal Lorentz space $\\Lambda_{\\varphi}$ so that the equation $R(X)=\\Lambda_{\\varphi}$ has a solution within the category of rearrangement invariant (r.i.) spaces. Moreover, we show that if $R(X)=\\Lambda_{\\varphi}$, then we can always take $X$ to be the minimal r.i. Banach range space for the Hardy operator defined in $\\Lambda_{\\varphi}$.", "revisions": [ { "version": "v2", "updated": "2013-11-14T16:59:55.000Z" } ], "analyses": { "subjects": [ "26D10", "46E30" ], "keywords": [ "restricted type spaces", "characterization", "hardy operator minus", "minimal lorentz space", "banach range space" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1211.3386S" } } }