{ "id": "1211.3269", "version": "v1", "published": "2012-11-14T10:52:09.000Z", "updated": "2012-11-14T10:52:09.000Z", "title": "Integer Points in Knapsack Polytopes and s-covering Radius", "authors": [ "Iskander Aliev", "Martin Henk", "Eva Linke" ], "categories": [ "math.CO", "math.NT", "math.OC" ], "abstract": "Given an integer matrix A satisfying certain regularity assumptions, we consider for a positive integer s the set F_s(A) of all integer vectors b such that the associated knapsack polytope P(A,b)={x: Ax=b, x non-negative} contains at least s integer points. In this paper we investigate the structure of the set F_s(A) sing the concept of s-covering radius. In particular, in a special case we prove an optimal lower bound for the s-Frobenius number.", "revisions": [ { "version": "v1", "updated": "2012-11-14T10:52:09.000Z" } ], "analyses": { "subjects": [ "90C10", "52C07", "11D07", "90C27", "11H06" ], "keywords": [ "integer points", "s-covering radius", "optimal lower bound", "associated knapsack polytope", "integer vectors" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1211.3269A" } } }