{ "id": "1211.3248", "version": "v3", "published": "2012-11-14T09:31:09.000Z", "updated": "2013-05-05T02:35:17.000Z", "title": "Lower bounds on maximal determinants of +-1 matrices via the probabilistic method", "authors": [ "Richard P. Brent", "Judy-anne H. Osborn", "Warren D. Smith" ], "comment": "32 pages, 64 references, 1 table. Theorem 4 added in v2. Minor improvements/corrections in v3", "categories": [ "math.CO" ], "abstract": "We show that the maximal determinant D(n) for $n \\times n$ ${\\pm 1}$-matrices satisfies $R(n) := D(n)/n^{n/2} \\ge \\kappa_d > 0$. Here $n^{n/2}$ is the Hadamard upper bound, and $\\kappa_d$ depends only on $d := n-h$, where $h$ is the maximal order of a Hadamard matrix with $h \\le n$. Previous lower bounds on R(n) depend on both $d$ and $n$. Our bounds are improvements, for all sufficiently large $n$, if $d > 1$. We give various lower bounds on R(n) that depend only on $d$. For example, $R(n) \\ge 0.07 (0.352)^d > 3^{-(d+3)}$. For any fixed $d \\ge 0$ we have $R(n) \\ge (2/(\\pi e))^{d/2}$ for all sufficiently large $n$ (and conjecturally for all positive $n$). If the Hadamard conjecture is true, then $d \\le 3$ and $\\kappa_d \\ge (2/(\\pi e))^{d/2} > 1/9$.", "revisions": [ { "version": "v3", "updated": "2013-05-05T02:35:17.000Z" } ], "analyses": { "subjects": [ "05B20", "05D40", "15B34" ], "keywords": [ "lower bounds", "maximal determinant", "probabilistic method", "sufficiently large", "hadamard upper bound" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1211.3248B" } } }