{ "id": "1211.3110", "version": "v1", "published": "2012-11-13T20:59:37.000Z", "updated": "2012-11-13T20:59:37.000Z", "title": "An effective lower bound for the height of algebraic numbers", "authors": [ "Paul Voutier" ], "journal": "Acta Arith. 74(1996), 81--95", "categories": [ "math.NT" ], "abstract": "We prove that if $\\alpha$ is a non-zero algebraic number of degree $d \\geq 2$ which is not a root of unity, then $dh(\\alpha)>(1/4) (\\log(\\log (d))/\\log(d))^3.", "revisions": [ { "version": "v1", "updated": "2012-11-13T20:59:37.000Z" } ], "analyses": { "subjects": [ "11J25", "11R06" ], "keywords": [ "effective lower bound", "non-zero algebraic number" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1211.3110V" } } }