{ "id": "1211.3019", "version": "v1", "published": "2012-11-13T15:23:00.000Z", "updated": "2012-11-13T15:23:00.000Z", "title": "Amount of failure of upper-semicontinuity of entropy in noncompact rank one situations, and Hausdorff dimension", "authors": [ "Shirali Kadyrov", "Anke D. Pohl" ], "comment": "24 pages", "categories": [ "math.DS" ], "abstract": "Recently, Einsiedler and the authors provided a bound in terms of escape of mass for the amount by which upper-semicontinuity for metric entropy fails for diagonal flows on homogeneous spaces $\\Gamma\\backslash G$, where $G$ is any connected semisimple Lie group of real rank 1 with finite center and $\\Gamma$ is any nonuniform lattice in $G$. We show that this bound is sharp and apply the methods used to establish bounds for the Hausdorff dimension of the set of points which diverge on average.", "revisions": [ { "version": "v1", "updated": "2012-11-13T15:23:00.000Z" } ], "analyses": { "subjects": [ "37A35", "37D40", "28D20", "22D40" ], "keywords": [ "hausdorff dimension", "noncompact rank", "upper-semicontinuity", "situations", "metric entropy fails" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1211.3019K" } } }