{ "id": "1211.2973", "version": "v3", "published": "2012-11-13T12:46:41.000Z", "updated": "2014-11-10T19:20:43.000Z", "title": "Itô calculus and jump diffusions for $G$-Lévy processes", "authors": [ "Krzysztof Paczka" ], "categories": [ "math.PR" ], "abstract": "The paper considers the integration theory for $G$-L\\'evy processes with finite activity. We introduce the It\\^o-L\\'evy integrals, give the It\\^o formula for them and establish SDE's, BSDE's and decoupled FBSDE's driven by $G$-L\\'evy processes. In order to develop such a theory, we prove two key results: the representation of the sublinear expectation associated with a $G$-L\\'evy process and a characterization of random variables in $L^p_G(\\Omega)$ in terms of their quasi-continuity.", "revisions": [ { "version": "v2", "updated": "2014-04-08T13:31:25.000Z", "comment": null, "journal": null, "doi": null }, { "version": "v3", "updated": "2014-11-10T19:20:43.000Z" } ], "analyses": { "subjects": [ "60H05", "60H10", "60G51" ], "keywords": [ "lévy processes", "jump diffusions", "levy processes", "finite activity", "integration theory" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1211.2973P" } } }