{ "id": "1211.2347", "version": "v1", "published": "2012-11-10T20:23:11.000Z", "updated": "2012-11-10T20:23:11.000Z", "title": "Cylinders, multi-cylinders and the induced action of $Aut(F_n)$", "authors": [ "Fedaa Ibrahim" ], "categories": [ "math.GR" ], "abstract": "A cylinder $C^1_u$ is the set of infinite words with fixed prefix $u$. A double-cylinder $C^2_{[1,u]}$ is \"the same\" for bi-infinite words. We show that for every word $u$ and any automorphism $\\varphi$ of the free group $F$ the image $\\varphi(C^1_u)$ is a finite union of cylinders. The analogous statement is true for double cylinders. We give (a) an algorithm, and (b) a precise formula which allows one to determine this finite union of cylinders.", "revisions": [ { "version": "v1", "updated": "2012-11-10T20:23:11.000Z" } ], "analyses": { "keywords": [ "induced action", "multi-cylinders", "finite union", "bi-infinite words", "free group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1211.2347I" } } }