{ "id": "1211.2341", "version": "v1", "published": "2012-11-10T18:09:56.000Z", "updated": "2012-11-10T18:09:56.000Z", "title": "Sobolev regularity for Monge-Ampère type equations", "authors": [ "Guido De Philippis", "Alessio Figalli" ], "categories": [ "math.AP" ], "abstract": "In this note we prove that, if the cost function satisfies some necessary structural conditions and the densities are bounded away from zero and infinity, then strictly $c$-convex potentials arising in optimal transportation belong to $W^{2,1+\\kappa}_{\\rm loc}$ for some $\\kappa>0$. This generalizes some recents results concerning the regularity of strictly convex Alexandrov solutions of the Monge-Amp\\`ere equation with right hand side bounded away from zero and infinity.", "revisions": [ { "version": "v1", "updated": "2012-11-10T18:09:56.000Z" } ], "analyses": { "keywords": [ "monge-ampère type equations", "sobolev regularity", "right hand side bounded away", "optimal transportation belong", "necessary structural conditions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1211.2341D" } } }