{ "id": "1211.2223", "version": "v2", "published": "2012-11-09T20:29:30.000Z", "updated": "2012-11-20T11:01:17.000Z", "title": "On stable solutions of biharmonic problem with polynomial growth", "authors": [ "Hatem Hajlaoui", "Abdelaziz Harrabi", "Dong Ye" ], "comment": "Corrected typos", "journal": "Pacific J. Maths, vol. 270(1), pp 79-93, 2014", "doi": "10.2140/pjm.2014.270.79", "categories": [ "math.AP" ], "abstract": "We prove the nonexistence of smooth stable solution to the biharmonic problem $\\Delta^2 u= u^p$, $u>0$ in $\\R^N$ for $1 < p < \\infty$ and $N < 2(1 + x_0)$, where $x_0$ is the largest root of the following equation: $$x^4 - \\frac{32p(p+1)}{(p-1)^2}x^2 + \\frac{32p(p+1)(p+3)}{(p-1)^3}x -\\frac{64p(p+1)^2}{(p-1)^4} = 0.$$ In particular, as $x_0 > 5$ when $p > 1$, we obtain the nonexistence of smooth stable solution for any $N \\leq 12$ and $p > 1$. Moreover, we consider also the corresponding problem in the half space $\\R^N_+$, or the elliptic problem $\\Delta^2 u= \\l(u+1)^p$ on a bounded smooth domain $\\O$ with the Navier boundary conditions. We will prove the regularity of the extremal solution in lower dimensions. Our results improve the previous works.", "revisions": [ { "version": "v2", "updated": "2012-11-20T11:01:17.000Z" } ], "analyses": { "subjects": [ "35J91", "35J30", "35J40" ], "keywords": [ "biharmonic problem", "polynomial growth", "smooth stable solution", "navier boundary conditions", "bounded smooth domain" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1211.2223H" } } }