{ "id": "1211.1785", "version": "v1", "published": "2012-11-08T08:17:52.000Z", "updated": "2012-11-08T08:17:52.000Z", "title": "Random symmetrizations of convex bodies", "authors": [ "D. Coupier", "Yu. Davydov" ], "comment": "23 pages, 1 figure", "categories": [ "math.PR" ], "abstract": "In this paper, the asymptotic behavior of sequences of successive Steiner and Minkowski symmetrizations is investigated. We state an equivalence result between the convergences of those sequences for Minkowski and Steiner. Moreover, in the case of independent (and not necessarily identically distributed) directions, we prove the almost sure convergence of successive symmetrizations at rate exponential for Minkowski, and at rate $e^{-c\\sqrt{n}}$, with $c>0$, for Steiner.", "revisions": [ { "version": "v1", "updated": "2012-11-08T08:17:52.000Z" } ], "analyses": { "subjects": [ "60D05", "52A22" ], "keywords": [ "convex bodies", "random symmetrizations", "asymptotic behavior", "sure convergence", "minkowski symmetrizations" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1211.1785C" } } }