{ "id": "1211.1306", "version": "v2", "published": "2012-11-06T16:46:41.000Z", "updated": "2013-08-28T15:08:44.000Z", "title": "Delay colourings of cubic graphs", "authors": [ "Agelos Georgakopoulos" ], "comment": "Published by the Electronic Journal of Combinatorics", "categories": [ "math.CO" ], "abstract": "In this note we prove the conjecture of \\cite{HaWiWi} that every bipartite multigraph with integer edge delays admits an edge colouring with $d+1$ colours in the special case where $d=3$. A connection to the Brualdi-Ryser-Stein conjecture is discussed.", "revisions": [ { "version": "v2", "updated": "2013-08-28T15:08:44.000Z" } ], "analyses": { "subjects": [ "05C15", "05C70" ], "keywords": [ "cubic graphs", "delay colourings", "integer edge delays admits", "special case", "bipartite multigraph" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1211.1306G" } } }