{ "id": "1211.0764", "version": "v1", "published": "2012-11-05T05:06:31.000Z", "updated": "2012-11-05T05:06:31.000Z", "title": "Stability of the surface area preserving mean curvature flow in Euclidean space", "authors": [ "Zheng Huang", "Longzhi Lin" ], "comment": "17 pages", "categories": [ "math.DG", "math.AP" ], "abstract": "We show that the surface area preserving mean curvature flow in Euclidean space exists for all time and converges exponentially to a round sphere, if initially the L^2-norm of the traceless second fundamental form is small (but the initial hypersurface is not necessarily convex).", "revisions": [ { "version": "v1", "updated": "2012-11-05T05:06:31.000Z" } ], "analyses": { "subjects": [ "53C44", "58J35" ], "keywords": [ "area preserving mean curvature flow", "surface area preserving mean curvature", "euclidean space", "second fundamental form" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1211.0764H" } } }