{ "id": "1210.8437", "version": "v1", "published": "2012-10-31T18:52:13.000Z", "updated": "2012-10-31T18:52:13.000Z", "title": "On a Conjecture of Andrica and Tomescu", "authors": [ "Blair D. Sullivan" ], "categories": [ "math.CO" ], "abstract": "Let S(n) be the integer sequence which is the coefficient of x^{n(n+1)/4} in the expansion of (1+x)(1+x^2), ..., (1+x^n) for positive integers n congruent to 0 or 3 mod 4. We prove a conjecture of Andrica and Tomescu that S(n) is asymptotic to \\sqrt{6/\\pi} 2^n n^{-3/2} as n approaches infinity.", "revisions": [ { "version": "v1", "updated": "2012-10-31T18:52:13.000Z" } ], "analyses": { "keywords": [ "conjecture", "integer sequence", "approaches infinity" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1210.8437S" } } }