{ "id": "1210.8285", "version": "v1", "published": "2012-10-31T10:20:23.000Z", "updated": "2012-10-31T10:20:23.000Z", "title": "On Poincare series of unicritical polynomials at the critical point", "authors": [ "Juan Rivera-Letelier", "Weixiao Shen" ], "comment": "17 pages", "categories": [ "math.DS" ], "abstract": "In this paper, we show that for a unicritical polynomial having a priori bounds, the unique conformal measure of minimal exponent has no atom at the critical point. For a conformal measure of higher exponent, we give a necessary and sufficient condition for the critical point to be an atom, in terms of the growth rate of the derivatives at the critical value.", "revisions": [ { "version": "v1", "updated": "2012-10-31T10:20:23.000Z" } ], "analyses": { "keywords": [ "critical point", "unicritical polynomial", "poincare series", "unique conformal measure", "priori bounds" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1210.8285R" } } }