{ "id": "1210.8254", "version": "v1", "published": "2012-10-31T07:51:53.000Z", "updated": "2012-10-31T07:51:53.000Z", "title": "Complete stationary surfaces in $\\mathbb{R}^4_1$ with total curvature $-\\int K\\mathrm{d}M=4π$", "authors": [ "Xiang Ma", "Peng Wang" ], "comment": "22 pages", "journal": "International Journal of Mathematics Vol. 24, No. 10 (2013)", "doi": "10.1142/S0129167X13500882", "categories": [ "math.DG", "math.CV", "math.GT" ], "abstract": "Applying the general theory about complete spacelike stationary (i.e. zero mean curvature) surfaces in 4-dimensional Lorentz space $\\mathbb{R}^4_1$, we classify those regular algebraic ones with total Gaussian curvature $-\\int K\\mathrm{d}M=4\\pi$. Such surfaces must be oriented and be congruent to either the generalized catenoids or the generalized enneper surfaces. For non-orientable stationary surfaces, we consider the Weierstrass representation on the oriented double covering $\\widetilde{M}$ (of genus $g$) and generalize Meeks and Oliveira's M\\\"obius bands. The total Gaussian curvature are shown to be at least $2\\pi(g+3)$ when $\\widetilde{M}\\to\\mathbb{R}^4_1$ is algebraic-type. We conjecture that there do not exist non-algebraic examples with $-\\int K\\mathrm{d}M=4\\pi$.", "revisions": [ { "version": "v1", "updated": "2012-10-31T07:51:53.000Z" } ], "analyses": { "subjects": [ "53A10", "53C42", "53C45" ], "keywords": [ "complete stationary surfaces", "total curvature", "total gaussian curvature", "zero mean curvature", "general theory" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1210.8254M" } } }