{ "id": "1210.7996", "version": "v1", "published": "2012-10-30T13:12:48.000Z", "updated": "2012-10-30T13:12:48.000Z", "title": "Approximation of functions of several variables by linear methods in the space $S^p$", "authors": [ "Viktor V. Savchuk", "Andriy L. Shidlich" ], "comment": "11 pages", "categories": [ "math.CA", "math.CV" ], "abstract": "In the spaces $S^p$ of functions of several variables, $2\\pi$-periodic in each variable, we study the approximative properties of operators $A^\\vartriangle_{\\varrho,r}$ and $P^\\vartriangle_{\\varrho,s}$, which generate two summation methods of multiple Fourier series on triangular regions. In particular, in the terms of approximation estimates of these operators, we give a constructive description of classes of functions, whose generalized derivatives belong to the classes $S^pH_\\omega$.", "revisions": [ { "version": "v1", "updated": "2012-10-30T13:12:48.000Z" } ], "analyses": { "subjects": [ "42B05", "26B30", "26B35", "G.1.2" ], "keywords": [ "linear methods", "multiple fourier series", "summation methods", "triangular regions", "approximation estimates" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1210.7996S" } } }