{ "id": "1210.7380", "version": "v1", "published": "2012-10-27T22:47:53.000Z", "updated": "2012-10-27T22:47:53.000Z", "title": "Estimates for the norms of products of sines and cosines", "authors": [ "Jordan Bell" ], "comment": "18 pages", "categories": [ "math.CA", "math.NT" ], "abstract": "In this paper we prove asymptotic formulas for the $L^p$ norms of $P_n(\\theta)=\\prod_{k=1}^n (1-e^{ik\\theta})$ and $Q_n(\\theta)=\\prod_{k=1}^n (1+e^{ik\\theta})$. These products can be expressed using $\\prod_{k=1}^n \\sin\\Big(\\frac{k\\theta}{2}\\Big)$ and $\\prod_{k=1}^n \\cos\\Big(\\frac{k\\theta}{2}\\Big)$ respectively. We prove an estimate for $P_n$ at a point near where its maximum occurs. Finally, we give an asymptotic formula for the maximum of the Fourier coefficients of $Q_n$.", "revisions": [ { "version": "v1", "updated": "2012-10-27T22:47:53.000Z" } ], "analyses": { "subjects": [ "42A05", "26D05", "40A25" ], "keywords": [ "asymptotic formula", "fourier coefficients", "maximum occurs" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1210.7380B" } } }