{ "id": "1210.7353", "version": "v1", "published": "2012-10-27T18:08:58.000Z", "updated": "2012-10-27T18:08:58.000Z", "title": "Cyclic sieving phenomenon on annular noncrossing permutations", "authors": [ "Jang Soo Kim" ], "comment": "12 pages, 3 figures", "categories": [ "math.CO" ], "abstract": "We show an instance of the cyclic sieving phenomenon on annular noncrossing permutations with given cycle types. We define annular $q$-Kreweras numbers, annular $q$-Narayana numbers, and annular $q$-Catalan number, all of which are polynomials in $q$. We then show that these polynomials exhibit the cyclic sieving phenomenon on annular noncrossing permutations. We also show that a sum of annular $q$-Kreweras numbers becomes an annular $q$-Narayana number and a sum of $q$-Narayana numbers becomes an annular $q$-Catalan number.", "revisions": [ { "version": "v1", "updated": "2012-10-27T18:08:58.000Z" } ], "analyses": { "keywords": [ "cyclic sieving phenomenon", "annular noncrossing permutations", "narayana number", "kreweras numbers", "catalan number" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1210.7353K" } } }