{ "id": "1210.7311", "version": "v1", "published": "2012-10-27T10:44:30.000Z", "updated": "2012-10-27T10:44:30.000Z", "title": "Phase Transitions for a model with uncountable set of spin values on a Cayley tree", "authors": [ "Yu. Kh. Eshkabilov", "U. A. Rozikov", "G. I. Botirov" ], "comment": "10 pages. arXiv admin note: substantial text overlap with arXiv:1202.2542, arXiv:1202.1722", "categories": [ "math-ph", "math.MP" ], "abstract": "In this paper we consider a model with nearest-neighbor interactions and with the set $[0,1]$ of spin values, on a Cayley tree of order $k \\geq 2$. To study translation-invariant Gibbs measures of the model we drive an nonlinear functional equation. For $k=2$ and 3 under some conditions on parameters of the model we prove non-uniqueness of translation-invariant Gibbs measures (i.e. there are phase transitions).", "revisions": [ { "version": "v1", "updated": "2012-10-27T10:44:30.000Z" } ], "analyses": { "subjects": [ "82B05", "82B20", "60K35" ], "keywords": [ "phase transitions", "spin values", "cayley tree", "uncountable set", "study translation-invariant gibbs measures" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1210.7311E" } } }