{ "id": "1210.7132", "version": "v1", "published": "2012-10-26T13:08:18.000Z", "updated": "2012-10-26T13:08:18.000Z", "title": "Classification of quasifinite representations of a Lie algebra related to Block type", "authors": [ "Yucai Su", "Chunguang Xia", "Ying Xu" ], "comment": "8 pages", "categories": [ "math.RT" ], "abstract": "A well-known theorem of Mathieu's states that a Harish-chandra module over the Virasoro algebra is either a highest weight module, a lowest weight module or a module of the intermediate series. It is proved in this paper that an analogous result also holds for the Lie algebra $\\BB$ related to Block type, with basis {L_{\\a,i},C|a,i\\in\\Z, i\\ge0} and relations [L_{\\a,i},L_{\\b,j}]=((i+1)\\b-(j+1)\\a)L_{\\a+\\b,i+j}+\\d_{\\a+\\b,0}\\d_{i+j,0}\\frac{\\a^3-\\a}{6}C, [C,L_{\\a,i}]=0.Namely, an irreducible quasifinite $\\BB$-module is either a highest weight module, a lowest weight module or a module of the intermediate series.", "revisions": [ { "version": "v1", "updated": "2012-10-26T13:08:18.000Z" } ], "analyses": { "subjects": [ "17B10", "17B65", "17B68" ], "keywords": [ "lie algebra", "block type", "quasifinite representations", "lowest weight module", "highest weight module" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1210.7132S" } } }