{ "id": "1210.7103", "version": "v1", "published": "2012-10-26T11:47:33.000Z", "updated": "2012-10-26T11:47:33.000Z", "title": "Existence and uniqueness of solutions for a boundary value problem arising from granular matter theory", "authors": [ "Graziano Crasta", "Annalisa Malusa" ], "comment": "25 pages, 3 figures", "categories": [ "math.AP" ], "abstract": "We consider a system of PDEs of Monge-Kantorovich type that, in the isotropic case, describes the stationary configurations of two-layers models in granular matter theory with a general source and a general boundary data. We propose a new weak formulation which is consistent with the physical model and permits us to prove existence and uniqueness results.", "revisions": [ { "version": "v1", "updated": "2012-10-26T11:47:33.000Z" } ], "analyses": { "subjects": [ "35A02", "35J25" ], "keywords": [ "granular matter theory", "boundary value problem arising", "general boundary data", "uniqueness results", "isotropic case" ], "publication": { "doi": "10.1016/j.jde.2015.04.032", "journal": "Journal of Differential Equations", "year": 2015, "month": "Oct", "volume": 259, "number": 8, "pages": 3656 }, "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015JDE...259.3656C" } } }