{ "id": "1210.7012", "version": "v2", "published": "2012-10-25T22:17:29.000Z", "updated": "2012-12-03T20:44:16.000Z", "title": "A central limit theorem for projections of the cube", "authors": [ "Grigoris Paouris", "Peter Pivovarov", "Joel Zinn" ], "categories": [ "math.PR", "math.MG" ], "abstract": "We prove a central limit theorem for the volume of projections of the N-cube onto a random subspace of dimension n, when n is fixed and N tends to infinity. Randomness in this case is with respect to the Haar measure on the Grassmannian manifold.", "revisions": [ { "version": "v2", "updated": "2012-12-03T20:44:16.000Z" } ], "analyses": { "keywords": [ "central limit theorem", "projections", "random subspace", "haar measure", "grassmannian manifold" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1210.7012P" } } }