{ "id": "1210.6542", "version": "v1", "published": "2012-10-24T14:23:40.000Z", "updated": "2012-10-24T14:23:40.000Z", "title": "Affine Cellularity of Khovanov-Lauda-Rouquier algebras in type A", "authors": [ "Alexander S. Kleshchev", "Joseph W. Loubert", "Vanessa Miemietz" ], "doi": "10.1112/jlms/jdt023", "categories": [ "math.RT", "math.QA" ], "abstract": "We prove that the Khovanov-Lauda-Rouquier algebras $R_\\al$ of type $A_\\infty$ are (graded) affine cellular in the sense of Koenig and Xi. In fact, we establish a stronger property, namely that the affine cell ideals in $R_\\al$ are generated by idempotents. This in particular implies the (known) result that the global dimension of $R_\\al$ is finite, and yields a theory of standard and reduced standard modules for $R_\\al$.", "revisions": [ { "version": "v1", "updated": "2012-10-24T14:23:40.000Z" } ], "analyses": { "keywords": [ "khovanov-lauda-rouquier algebras", "affine cellularity", "affine cell ideals", "stronger property", "global dimension" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1210.6542K" } } }