{ "id": "1210.6326", "version": "v4", "published": "2012-10-23T18:44:04.000Z", "updated": "2015-08-28T12:33:40.000Z", "title": "A Spectral Multiplier Theorem associated with a Schrödinger Operator", "authors": [ "Younghun Hong" ], "categories": [ "math.AP" ], "abstract": "We establish a spectral multiplier theorem associated with a Schr\\\"odinger operator H=-\\Delta+V(x) in \\mathbb{R}^3. We present a new approach employing the Born series expansion for the resolvent. This approach provides an explicit integral representation for the difference between a spectral multiplier and a Fourier multiplier, and it allows us to treat a large class of Schr\\\"odinger operators without Gaussian heat kernel estimates. As an application to nonlinear PDEs, we show the local-in-time well-posedness of a 3d quintic nonlinear Schr\\\"odinger equation with a potential.", "revisions": [ { "version": "v3", "updated": "2012-12-26T22:02:44.000Z", "comment": null, "journal": null, "doi": null }, { "version": "v4", "updated": "2015-08-28T12:33:40.000Z" } ], "analyses": { "keywords": [ "spectral multiplier theorem", "schrödinger operator", "gaussian heat kernel estimates", "3d quintic nonlinear", "explicit integral representation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1210.6326H" } } }