{ "id": "1210.5704", "version": "v2", "published": "2012-10-21T08:43:54.000Z", "updated": "2012-10-23T07:37:04.000Z", "title": "Counting graphs with different numbers of spanning trees through the counting of prime partitions", "authors": [ "Jernej Azarija" ], "comment": "5 pages", "categories": [ "math.CO" ], "abstract": "Let A_n (n >= 1) be the set of all integers x such that there exists a connected graph on n vertices with precisely x spanning trees. In this paper, we show that |A_n| grows faster than sqrt{n}exp(2Pi*sqrt{n/log{n}/Sqrt(3)} This settles a question of Sedlacek.", "revisions": [ { "version": "v2", "updated": "2012-10-23T07:37:04.000Z" } ], "analyses": { "subjects": [ "05A16" ], "keywords": [ "spanning trees", "prime partitions", "counting graphs", "grows faster", "connected graph" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1210.5704A" } } }