{ "id": "1210.5475", "version": "v2", "published": "2012-10-19T17:23:30.000Z", "updated": "2013-06-11T17:29:47.000Z", "title": "On the Harder-Narasimhan filtration for finite dimensional representations of quivers", "authors": [ "Alfonso Zamora" ], "comment": "v2 13 pages, minor corrections suggested by the referee and references added. To appear in Geom. Dedicata", "journal": "Geom. Dedicata: Volume 170, Issue 1 (2014), Page 185-194", "doi": "10.1007/s10711-013-9876-8", "categories": [ "math.AG", "math.RT" ], "abstract": "We prove that the Harder-Narasimhan filtration for an unstable finite dimensional representation of a finite quiver coincides with the filtration associated to the 1-parameter subgroup of Kempf, which gives maximal unstability in the sense of Geometric Invariant Theory for the corresponding point in the parameter space where these objects are parametrized in the construction of the moduli space.", "revisions": [ { "version": "v2", "updated": "2013-06-11T17:29:47.000Z" } ], "analyses": { "subjects": [ "14D20", "14L24", "16G20" ], "keywords": [ "harder-narasimhan filtration", "unstable finite dimensional representation", "finite quiver coincides", "geometric invariant theory", "parameter space" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1210.5475Z" } } }