{ "id": "1210.5062", "version": "v1", "published": "2012-10-18T09:27:11.000Z", "updated": "2012-10-18T09:27:11.000Z", "title": "Some existence and regularity results for porous media and fast diffusion equations with a gradient term", "authors": [ "Boumediene Abdellaoui", "Ireneo Peral", "Magdalena Walias" ], "categories": [ "math.AP" ], "abstract": "In this paper we consider the problem $$(P)\\qquad \\{{array}{rclll} u_t-\\D u^m&=&|\\n u|^q +\\,f(x,t),&\\quad u\\ge 0 \\hbox{in} \\Omega_T\\equiv \\Omega\\times (0,T), u(x,t)&=&0 &\\quad \\hbox{on} \\partial\\Omega\\times (0,T) u(x,0)&=&u_0(x),&\\quad x\\in \\Omega {array}. $$ where $\\O\\subset \\ren$, $N\\ge 2$, is a bounded regular domain, $1