{ "id": "1210.4572", "version": "v1", "published": "2012-10-16T20:44:33.000Z", "updated": "2012-10-16T20:44:33.000Z", "title": "Fractional smoothness of functionals of diffusion processes under a change of measure", "authors": [ "Stefan Geiss", "Emmanuel Gobet" ], "categories": [ "math.PR", "math.AP", "math.FA" ], "abstract": "Let $v:[0,T]\\times \\R^d \\to \\R$ be the solution of the parabolic backward equation $ \\partial_t v + (1/2) \\sum_{i,l} [\\sigma \\sigma^\\perp]_{il} \\partial_{x_i \\partial_{x_l} v + \\sum_{i} b_i \\partial_{x_i}v + kv =0$ with terminal condition $g$, where the coefficients are time- and state-dependent, and satisfy certain regularity assumptions. Let $X=(X_t)_{t\\in [0,T]}$ be the associated $\\R^d$-valued diffusion process on some appropriate $(\\Omega,\\cF,\\Q)$. For $p\\in [2,\\infty)$ and a measure $d\\P=\\lambda_T d\\Q$, where $\\lambda_T$ satisfies the Muckenhoupt condition $A_\\alpha$ for $\\alpha \\in (1,p)$, we relate the behavior of $\\|g(X_T)-\\ept g(X_T) \\|_{L_p(\\P)}$, $\\|\\nabla v(t,X_t) \\|_{L_p(\\P)}$ and $\\|D^2 v(t,X_t) \\|_{L_p(\\P)}$ to each other, where $D^2v:=(\\partial_{x_i \\partial_{x_l}v)_{i,l}$ is the Hessian matrix.", "revisions": [ { "version": "v1", "updated": "2012-10-16T20:44:33.000Z" } ], "analyses": { "subjects": [ "60H30", "46B70", "35K10", "35Bxx" ], "keywords": [ "diffusion processes", "fractional smoothness", "functionals", "hessian matrix", "parabolic backward equation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1210.4572G" } } }