{ "id": "1210.4281", "version": "v2", "published": "2012-10-16T07:37:25.000Z", "updated": "2012-12-11T10:18:12.000Z", "title": "Asymptotic controllability and optimal control", "authors": [ "Monica Motta", "Franco Rampazzo" ], "categories": [ "math.OC" ], "abstract": "We consider a control problem where the state must reach asymptotically a target while paying an integral payoff with a non-negative Lagrangian. The dynamics is just continuous, and no assumptions are made on the zero level set of the Lagrangian. Through an inequality involving a positive number $\\bar p_0$ and a Minimum Restraint Function $U=U(x)$ --a special type of Control Lyapunov Function-- we provide a condition implying that (i) the control system is asymptotically controllable, and (ii) the value function is bounded above by $U/\\bar p_0$.", "revisions": [ { "version": "v2", "updated": "2012-12-11T10:18:12.000Z" } ], "analyses": { "keywords": [ "optimal control", "asymptotic controllability", "minimum restraint function", "zero level set", "control lyapunov" ], "tags": [ "journal article" ], "publication": { "doi": "10.1016/j.jde.2013.01.006", "journal": "Journal of Differential Equations", "year": 2013, "volume": 254, "number": 7, "pages": 2744 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013JDE...254.2744M" } } }