{ "id": "1210.4029", "version": "v1", "published": "2012-10-15T13:41:56.000Z", "updated": "2012-10-15T13:41:56.000Z", "title": "A note on balanced independent sets in the cube", "authors": [ "Ben Barber" ], "comment": "2 pages", "journal": "Australas. J. Combin. 52 (2012), 205-207", "categories": [ "math.CO" ], "abstract": "Ramras conjectured that the maximum size of an independent set in the discrete cube containing equal numbers of sets of even and odd size is 2^(n-1) - (n-1 choose (n-1)/2) when n is odd. We prove this conjecture, and find the analogous bound when n is even. The result follows from an isoperimetric inequality in the cube.", "revisions": [ { "version": "v1", "updated": "2012-10-15T13:41:56.000Z" } ], "analyses": { "subjects": [ "05C69", "05C75" ], "keywords": [ "balanced independent sets", "discrete cube containing equal numbers", "conjecture", "isoperimetric inequality" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 2, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1210.4029B" } } }