{ "id": "1210.3997", "version": "v1", "published": "2012-10-15T12:21:16.000Z", "updated": "2012-10-15T12:21:16.000Z", "title": "Remark on equicharacteristic analogue of Hesselholt's conjecture on cohomology of Witt vectors", "authors": [ "Amit Hogadi", "Supriya Pisolkar" ], "comment": "To appear in Acta Airthmetica", "categories": [ "math.NT" ], "abstract": "Let $L/K$ be a finite Galois extension of complete discrete valued fields of characteristic $p$. Assume that the induced residue field extension $k_L/k_K$ is separable. For an integer $n\\geq 0$, let $W_n(\\sO_L)$ denote the ring of Witt vectors of length $n$ with coefficients in $\\sO_L$. We show that the proabelian group ${H^1(G,W_n(\\sO_L))}_{n\\in \\N}$ is zero. This is an equicharacteristic analogue of Hesselholt's conjecture.", "revisions": [ { "version": "v1", "updated": "2012-10-15T12:21:16.000Z" } ], "analyses": { "subjects": [ "11S25" ], "keywords": [ "witt vectors", "hesselholts conjecture", "equicharacteristic analogue", "cohomology", "complete discrete valued fields" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1210.3997H" } } }