{ "id": "1210.3564", "version": "v1", "published": "2012-10-12T16:20:39.000Z", "updated": "2012-10-12T16:20:39.000Z", "title": "A sharp multiplier theorem for Grushin operators in arbitrary dimensions", "authors": [ "Alessio Martini", "Detlef Müller" ], "categories": [ "math.AP", "math.FA" ], "abstract": "In a recent work by A. Martini and A. Sikora (arXiv:1204.1159), sharp L^p spectral multiplier theorems for the Grushin operators acting on $R^{d_1} \\times R^{d_2}$ are obtained in the case $d_1 \\geq d_2$. Here we complete the picture by proving sharp results in the case $d_1 < d_2$. Our approach exploits L^2 weighted estimates with \"extra weights\" depending only on the second factor of $R^{d_1} \\times R^{d_2}$ (in contrast with the mentioned work, where the \"extra weights\" depend on the first factor) and gives a new unified proof of the sharp results without restrictions on the dimensions.", "revisions": [ { "version": "v1", "updated": "2012-10-12T16:20:39.000Z" } ], "analyses": { "subjects": [ "43A85", "42B15" ], "keywords": [ "sharp multiplier theorem", "grushin operators", "arbitrary dimensions", "extra weights", "spectral multiplier theorems" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1210.3564M" } } }