{ "id": "1210.3546", "version": "v2", "published": "2012-10-12T15:05:15.000Z", "updated": "2013-09-27T20:20:08.000Z", "title": "Empirical central limit theorems for ergodic automorphisms of the torus", "authors": [ "J. Dedecker", "F. Merlevède", "F. Pène" ], "comment": "32 pages", "categories": [ "math.PR" ], "abstract": "Let T be an ergodic automorphism of the d-dimensional torus T^d, and f be a continuous function from T^d to R^l. On the probability space T^d equipped with the Lebesgue-Haar measure, we prove the weak convergence of the sequential empirical process of the sequence (f o T^i)_{i \\geq 1} under some mild conditions on the modulus of continuity of f. The proofs are based on new limit theorems and new inequalities for non-adapted sequences, and on new estimates of the conditional expectations of f with respect to a natural filtration.", "revisions": [ { "version": "v2", "updated": "2013-09-27T20:20:08.000Z" } ], "analyses": { "subjects": [ "60F17", "37D30" ], "keywords": [ "empirical central limit theorems", "ergodic automorphism", "probability space", "lebesgue-haar measure", "d-dimensional torus" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1210.3546D" } } }