{ "id": "1210.2415", "version": "v1", "published": "2012-10-08T20:52:04.000Z", "updated": "2012-10-08T20:52:04.000Z", "title": "Finite speed of propagation for stochastic porous media equations", "authors": [ "Benjamin Gess" ], "comment": "26 pages", "categories": [ "math.PR", "math.AP", "math.DS" ], "abstract": "We prove finite speed of propagation for stochastic porous media equations perturbed by linear multiplicative space-time rough signals. Explicit and optimal estimates for the speed of propagation are given. The result applies to any continuous driving signal, thus including fractional Brownian motion for all Hurst parameters. The explicit estimates are then used to prove that the corresponding random attractor has infinite fractal dimension.", "revisions": [ { "version": "v1", "updated": "2012-10-08T20:52:04.000Z" } ], "analyses": { "subjects": [ "37L55", "60H15", "76S05", "37L30" ], "keywords": [ "stochastic porous media equations", "propagation", "linear multiplicative space-time rough signals" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1210.2415G" } } }