{ "id": "1210.2373", "version": "v1", "published": "2012-10-08T18:28:35.000Z", "updated": "2012-10-08T18:28:35.000Z", "title": "A solution of Sun's $520 challenge concerning 520/pi", "authors": [ "Mathew Rogers", "Armin Straub" ], "comment": "17 pages", "doi": "10.1142/S1793042113500267", "categories": [ "math.NT" ], "abstract": "We prove a Ramanujan-type formula for $520/\\pi$ conjectured by Sun. Our proof begins with a hypergeometric representation of the relevant double series, which relies on a recent generating function for Legendre polynomials by Wan and Zudilin. After showing that appropriate modular parameters can be introduced, we then apply standard techniques, going back to Ramanujan, for establishing series for $1/\\pi$.", "revisions": [ { "version": "v1", "updated": "2012-10-08T18:28:35.000Z" } ], "analyses": { "keywords": [ "challenge concerning", "appropriate modular parameters", "proof begins", "hypergeometric representation", "relevant double series" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1210.2373R" } } }