{ "id": "1210.1903", "version": "v2", "published": "2012-10-06T01:23:37.000Z", "updated": "2013-08-01T20:49:16.000Z", "title": "On $(2,4)$ complete intersection threefolds that contain an Enriques surface", "authors": [ "Lev A. Borisov", "Howard J. Nuer" ], "comment": "30 pages, 1 figure. Added arguments so that most Macaulay calculations are not needed anymore", "categories": [ "math.AG" ], "abstract": "We study nodal complete intersection threefolds of type $(2,4)$ in $\\PP^5$ which contain an Enriques surface in its Fano embedding. We completely determine Calabi-Yau birational models of a generic such threefold. These models have Hodge numbers $(h^{11},h^{12})=(2,32)$. We also describe Calabi-Yau varieties with Hodge numbers equal to $(2,26)$, $(23,5)$ and $(31,1)$. The last two pairs of Hodge numbers are, to the best of our knowledge, new.", "revisions": [ { "version": "v2", "updated": "2013-08-01T20:49:16.000Z" } ], "analyses": { "subjects": [ "14J32", "14J28" ], "keywords": [ "enriques surface", "study nodal complete intersection threefolds", "determine calabi-yau birational models", "hodge numbers equal" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1210.1903B" } } }