{ "id": "1210.1664", "version": "v3", "published": "2012-10-05T07:32:21.000Z", "updated": "2014-01-20T20:00:33.000Z", "title": "On the blow up and condensation of supercritical solution of the Nordheim equation for bosons", "authors": [ "M. Escobedo", "J. J. L. Velázquez" ], "comment": "30 pages Corrected typos. Version accepted for publication", "categories": [ "math-ph", "math.AP", "math.MP" ], "abstract": "In this paper we prove that the solutions of the isotropic, spatially homogeneous Nordheim equation for bosons, with bounded initial, data blow up in finite time in the $L^\\infty$ norm if the values of the energy and particle density are in the range of values where the corresponding equilibria contains a Dirac mass. We also prove that, in the weak solutions, whose initial data are measures with values of particle and energy densities satisfying the previous condition, a Dirac measure at the origin forms in finite time.", "revisions": [ { "version": "v3", "updated": "2014-01-20T20:00:33.000Z" } ], "analyses": { "subjects": [ "35Q20" ], "keywords": [ "supercritical solution", "finite time", "condensation", "dirac measure", "spatially homogeneous nordheim equation" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1210.1664E" } } }