{ "id": "1210.1490", "version": "v1", "published": "2012-10-04T15:35:10.000Z", "updated": "2012-10-04T15:35:10.000Z", "title": "Finite and infinite time horizon for BSDE with Poisson jumps", "authors": [ "Ahmadou Bamba Sow" ], "categories": [ "math.PR" ], "abstract": "This paper is devoted to solving a real valued backward stochastic differential equation with jumps where the time horizon may be finite or infinite. Under linear growth generator, we prove existence of a minimal solution. Using a comparison theorem we show existence and uniqueness of solution to such equations when the generator is uniformly continuous and satisfies a weakly monotonic condition.", "revisions": [ { "version": "v1", "updated": "2012-10-04T15:35:10.000Z" } ], "analyses": { "subjects": [ "60H05", "60G44" ], "keywords": [ "infinite time horizon", "poisson jumps", "linear growth generator", "valued backward stochastic differential equation", "real valued backward stochastic differential" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1210.1490B" } } }