{ "id": "1210.0881", "version": "v1", "published": "2012-10-02T19:04:22.000Z", "updated": "2012-10-02T19:04:22.000Z", "title": "A Class of Permutation Binomials over Finite Fields", "authors": [ "Xiang-dong Hou" ], "comment": "10 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "Let $q>2$ be a prime power and $f={\\tt x}^{q-2}+t{\\tt x}^{q^2-q-1}$, where $t\\in\\Bbb F_q^*$. It was recently conjectured that $f$ is a permutation polynomial of $\\Bbb F_{q^2}$ if and only if one of the following holds: (i) $t=1$, $q\\equiv 1\\pmod 4$; (ii) $t=-3$, $q\\equiv \\pm1\\pmod{12}$; (iii) $t=3$, $q\\equiv -1\\pmod 6$. We confirm this conjecture in the present paper.", "revisions": [ { "version": "v1", "updated": "2012-10-02T19:04:22.000Z" } ], "analyses": { "subjects": [ "11T06", "11T55", "33C05" ], "keywords": [ "permutation binomials", "finite fields", "conjecture", "prime power" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1210.0881H" } } }