{ "id": "1210.0755", "version": "v2", "published": "2012-10-02T12:48:52.000Z", "updated": "2014-02-11T10:38:34.000Z", "title": "On fractional Schrödinger equations in (\\mathbb{R}^N) without the Ambrosetti-Rabinowitz condition", "authors": [ "Simone Secchi" ], "comment": "26 pages. To appear on Topological Methods In Nonlinear Analysis", "categories": [ "math.AP" ], "abstract": "In this note we prove the existence of radially symmetric solutions for a class of fractional Schr\\\"odinger equation in (\\mathbb{R}^N) of the form {equation*} \\slap u + V(x) u = g(u), {equation*} where the nonlinearity $g$ does not satisfy the usual Ambrosetti-Rabinowitz condition. Our approach is variational in nature, and leans on a Pohozaev identity for the fractional laplacian.", "revisions": [ { "version": "v2", "updated": "2014-02-11T10:38:34.000Z" } ], "analyses": { "subjects": [ "35Q55", "35A15", "35J20" ], "keywords": [ "fractional schrödinger equations", "usual ambrosetti-rabinowitz condition", "radially symmetric solutions", "pohozaev identity", "fractional laplacian" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1210.0755S" } } }