{ "id": "1210.0590", "version": "v1", "published": "2012-10-01T21:47:06.000Z", "updated": "2012-10-01T21:47:06.000Z", "title": "Sobolev $L^2_p$-functions on closed subsets of $R^2$", "authors": [ "Pavel Shvartsman" ], "comment": "109 pages", "categories": [ "math.FA" ], "abstract": "For each $p>2$ we give intrinsic characterizations of the restriction of the homogeneous Sobolev space $L^1_p(R^2)$ to an arbitrary finite subset $E$ of $R^2$. The trace criterion is expressed in terms of certain weighted oscillations of the second order with respect to a measure generated by the Menger curvature of triangles with vertices in $E$.", "revisions": [ { "version": "v1", "updated": "2012-10-01T21:47:06.000Z" } ], "analyses": { "subjects": [ "46E35" ], "keywords": [ "closed subsets", "arbitrary finite subset", "homogeneous sobolev space", "intrinsic characterizations", "trace criterion" ], "note": { "typesetting": "TeX", "pages": 109, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1210.0590S" } } }