{ "id": "1210.0571", "version": "v1", "published": "2012-10-01T20:44:31.000Z", "updated": "2012-10-01T20:44:31.000Z", "title": "Well-rounded sublattices and coincidence site lattices", "authors": [ "Peter Zeiner" ], "comment": "6 pages", "categories": [ "math.MG", "cond-mat.mtrl-sci" ], "abstract": "A lattice is called well-rounded, if its lattice vectors of minimal length span the ambient space. We show that there are interesting connections between the existence of well-rounded sublattices and coincidence site lattices (CSLs). Furthermore, we count the number of well-rounded sublattices for several planar lattices and give their asymptotic behaviour.", "revisions": [ { "version": "v1", "updated": "2012-10-01T20:44:31.000Z" } ], "analyses": { "subjects": [ "20H15", "51F15", "11H50", "11H31", "11M41", "40E10" ], "keywords": [ "coincidence site lattices", "well-rounded sublattices", "minimal length span", "asymptotic behaviour", "planar lattices" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1210.0571Z" } } }