{ "id": "1210.0371", "version": "v3", "published": "2012-10-01T12:27:06.000Z", "updated": "2013-09-14T22:51:48.000Z", "title": "Weak Necessary and Sufficient Stochastic Maximum Principle for Markovian Regime-Switching Diffusion Models", "authors": [ "Yusong Li", "Harry Zheng" ], "comment": "30 pages", "categories": [ "math.OC" ], "abstract": "In this paper we prove a weak necessary and sufficient maximum principle for Markovian regime switching stochastic optimal control problems. Instead of insisting on the maximum condition of the Hamiltonian, we show that 0 belongs to the sum of Clarke's generalized gradient of the Hamiltonian and Clarke's normal cone of the control constraint set at the optimal control. Under a joint concavity condition on the Hamiltonian and a convexity condition on the terminal objective function, the necessary condition becomes sufficient. We give four examples to demonstrate the weak stochastic maximum principle.", "revisions": [ { "version": "v3", "updated": "2013-09-14T22:51:48.000Z" } ], "analyses": { "subjects": [ "93E20", "49J52" ], "keywords": [ "sufficient stochastic maximum principle", "markovian regime-switching diffusion models", "weak necessary", "stochastic optimal control problems", "switching stochastic optimal control" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1210.0371L" } } }