{ "id": "1209.6284", "version": "v3", "published": "2012-09-27T16:53:57.000Z", "updated": "2014-02-25T14:18:57.000Z", "title": "Divisibility by 2 of Stirling numbers of the second kind and their differences", "authors": [ "Jianrong Zhao", "Shaofang Hong", "Wei Zhao" ], "comment": "23 pages. To appear in Journal of Number Theory", "journal": "Journal of Number Theory 140 (2014), 324-348", "categories": [ "math.NT" ], "abstract": "Let $n,k,a$ and $c$ be positive integers and $b$ be a nonnegative integer. Let $\\nu_2(k)$ and $s_2(k)$ be the 2-adic valuation of $k$ and the sum of binary digits of $k$, respectively. Let $S(n,k)$ be the Stirling number of the second kind. It is shown that $\\nu_2(S(c2^n,b2^{n+1}+a))\\geq s_2(a)-1,$ where $04$ is a power of 2, and $\\delta(k)=0$ otherwise. This confirms a conjecture of Lengyel raised in 2009 except when $k$ is a power of 2 minus 1.", "revisions": [ { "version": "v3", "updated": "2014-02-25T14:18:57.000Z" } ], "analyses": { "keywords": [ "second kind", "stirling number", "divisibility", "differences", "binary digits" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1209.6284Z" } } }